If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+59x+172=0
a = 4; b = 59; c = +172;
Δ = b2-4ac
Δ = 592-4·4·172
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-27}{2*4}=\frac{-86}{8} =-10+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+27}{2*4}=\frac{-32}{8} =-4 $
| 2p+3(p+8)=0 | | A=(3.14)(5x-3) | | 20^2+25^2=c^2 | | 6(2x+7)+5x=93 | | 10(x+6)=72 | | 3x-5=3/4(8x-80) | | (5x-3)=3x+1 | | 12v=4v+72 | | 17.5=32t-256t | | x=8+x+1 | | 0=32t-256t | | 0=32t-256 | | -8x-15=30+x | | 10x+8-6x=20 | | F(x)=2/3x^2+18 | | 50.50=18+0.5n | | 5n+9,n=1 | | (3m+3)+33=90 | | 7x6-3x=10 | | 50+5.5x=8x | | 32=2c | | -3x–15=-11–3x–4 | | 3+s=5 | | t-21=2 | | 22x-10=512 | | t+25-3=30 | | (X-2)+x=90 | | q-14=2 | | 60x2+x=10 | | 10x+5-4=15 | | 2(z-3)+5=3(z-1) | | -25=5(x+2.5) |